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Two rakes of cross-wire probes were used to capture the two-point velocity statistics
in a flow through an axisymmetric sudden expansion. The expansion ratio of the
facility is 3, and has a constant geometry. Measurements were acquired at a Reynolds
number equal to 54 000, based on centreline velocity and inlet pipe diameter. The
two-point velocity correlations were obtained along a plane normal to the flow (r, θ),
at eleven downstream step-height positions spanning from the recirculating region,
through reattachment, and into the redeveloping region of the flow. Measurements
were acquired by means of a flying-hot-wire technique to overcome rectification errors
near the outer wall of the pipe where flow recirculations were greatest. A mixed
application of proper orthogonal (in radius) and Fourier decomposition (in azimuth)
was performed at each streamwise location to provide insight into the dynamics
of the most energetic modes in all regions of the flow. This multi-point analysis
reveals that the flow evolves from the Fourier-azimuthal mode m =2 (containing the
largest amount of turbulent kinetic energy) in the recirculating region, to m = 1 in
the reattachment and redeveloping regions of the flow. An eigenvector reconstruction
of the kernel, using the most energetic modes from the decomposition, displays the
spatial dependence of the Fourier-azimuthal modes and the characteristics that govern
the turbulent shear layer and recirculating regions of the flow.

1. Introduction
Understanding the dynamic behaviour of separated flows is of immense importance

for improving and manipulating many practical fluid engineering problems. The
axisymmetric sudden expansion is a key canonical separated flow that exhibits this
highly complex flow phenomenon. Industrial applications of sudden expansions are
seen in the automotive and aerospace industries. In particular, sudden expansions
are examined extensively in the propulsion industry because of their similarities to
sudden dump combustors. Swirl is introduced at the expansion, and the recirculation
region is used as a flame holder. From a scientific standpoint, insightful information
about the fundamental behaviours of massively separated flows can be obtained using
sudden expansion-type geometries.
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‡ Present address: Ford Motor Company, Dearborn, MI, NY, USA.
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Figure 1. (a) A slice in the (z, r)-plane of the sudden expansion, identifying the predominant
regions of the flow: recirculating, reattaching, and redeveloping. (b) Cylindrical coordinate
system in the axisymmetric sudden expansion.

Although the flow through an axisymmetric sudden expansion is three-dimensional
in nature, most of the attention has been given to the radial (r) and streamwise
(z) plane because of the flow’s mean azimuthal invariance. It is in this plane (r, z)
that there exist three regions of interest: recirculating, reattaching, and redeveloping
(figure 1a). As the flow passes over the expansion lip, a free shear layer is formed,
thus creating a high-speed side (located near the free-stream flow) and a low-speed
side (located near the wall). Eventually the outer shear layer migrates towards the
wall, thus impacting its surface and establishing a reattachment region. Rothe &
Johnston (1976) defined this reattachment region as the physical location at which
the instantaneous velocity was in either forward or reverse flow 50 % of the time, and
where the Reynolds stresses were found to decay most rapidly.

Early investigations of axisymmetric expansions by Chaturvedi (1963) used Pitot
tubes and constant temperature anemometry (CTA) techniques (hot wires) to obtain
mean and fluctuating profiles, respectively, and reported a noticeable mutation
in the turbulent structures outside the recirculating region near reattachment.
Unfortunately, the findings were limited by the unavailability of suitable measuring
techniques for high-turbulence-intensity reversing flows, so their results are enigmatic.
Bradshaw & Wong (1972) later investigated the simple back-step flow and discovered
that the Reynolds stress decay was created by the presence of a strong adverse
pressure gradient and the absence of a normal velocity (v = 0) at the wall, causing
large eddies to be torn in two. Furthermore, Eaton & Johnston (1981) identified five
parameters that governed the reattachment length: (i) initial boundary layer state, (ii)
initial boundary layer thickness, (iii) free-stream turbulence, (iv) pressure gradient, and
(v) aspect ratio. The reader is referred to Eaton & Johnston (1981) for a more com-
prehensive discussion of results using hot-wire, pulsed-wire, laser anemometry and
flow visualization techniques.

Cole & Glauser (1998b) illustrated the flow’s unsteady behaviour through the
axisymmetric sudden expansion using conditional eddy estimation techniques, via
multiple channels of simultaneously sampled CTA probes. They reconstructed an
instantaneous estimate of the turbulent structure in the (r, z)-plane based on a priori
knowledge about the statistical relationship between the core and recirculating regions
of the flow (this technique utilized the flying-wire system used in the present study
and is described in § 3.1). This involved placing stationary cross-wire probes in the
flow’s core region where turbulence intensities were moderate, and where there was
no reverse flow. In doing so, they were able to properly estimate the flow’s highly



Low-dimensional azimuthal characteristics of expanding flows 143

unsteady near-wall region, thus concluding that the coherent structures from the
near-field shear layer (upstream near the expansion lip) had propagated towards the
wall, causing the unsteadiness in the reattachment region. These findings were similar
to Johnston (1976), who reported large-scale structures of the order of the step-height
convecting through this region.

Additional findings from Cole & Glauser (1998a) showed that for an expansion
ratio of 3, the turbulent kinetic energy (TKE) was highest between 5 and 8 step-
heights downstream from the expansion lip, at r/R ≈ 0.2. This was thought to occur
near the core because of the merging of the inner shear layers. Also, the TKE produc-
tion was observed to reach its maximum within the first four step-heights, while the
reattachment length was about 9 step-heights from the expansion lip. These findings
were consistent with those of Stokes (1999) and Hussein, Capp & George (1994) in
the backward-facing step and the axisymmetric-jet shear layer, respectively.

While these investigations have focused on the (r, z)-plane of the axisymmetric
sudden expansion, a lack of clarity still persists regarding the role of the azimuthal
structure on the mean turbulent motions of these flows, especially in the unsteady
reattachment region. This paper presents an investigation using multi-point flying-
hot-wire measurements with low-dimensional analytical tools in the (r, θ)-plane of
the axisymmetric sudden expansion to demonstrate the modal behaviour of this
wall-bounded flow. This is executed at several streamwise locations (z/h = 3 to 13),
covering all three regions of the flow: recirculating, reattaching and redeveloping. The
analytical tools comprise a Fourier-azimuthal decomposition of the azimuthal field
into azimuthal modes, followed by a decomposition of the radial field using proper
orthogonal decomposition (POD). This work complements that of Cole (1996) who
applied the one-dimensional POD (in r) to the fluctuating velocity field at several
streamwise locations in the same facility. Cole (1996) concluded that the first POD
mode consistently captured between 35 % and 40 % of the TKE from z/h = 2 to 13,
and nearly 50 % of the energy with the addition of the second POD mode. Therefore,
these investigations stem from an interest in understanding the importance of the
azimuthal structure in this wall-bounded flow, and its characteristics through the
recirculating, reattaching and redeveloping regions of the flow.

The outline of this paper is as follows. A brief description of the low-dimensional
techniques is given in § 2, followed by a description of the experiment, the flying-wire
technique, and a discussion of the basic statistical features of the flow through the
axisymmetric sudden expansion in § 3. Radial and azimuthal correlations are presented
and discussed in § 4 in a manner fitting to the analytical tools employed. The results of
the decomposition are shown in § 5 including a discrete modal reconstruction of the
kernel to demonstrate the dominant characteristics of this wall-bounded flow. Since
the geometry of the axisymmetric sudden expansion is in cylindrical coordinates, the
current analysis is expressed using the notation of figure 1(b).

2. Low-dimensional techniques
As has already been mentioned, the main analytical tools employed in this

investigation comprise Fourier-azimuthal and proper orthogonal decomposition. The
combination of these techniques is not new, and the interested reader should consult
the work of Glauser & George (1987), Citriniti & George (2000), and Ukeiley, Seiner &
Ponton (1999) regarding the necessary conditions for employing them. Regarding the
Fourier decomposition of axisymmetric turbulent flows (Glauser & George 1987a),
mean statistical properties from single-point stationary measurements acquired at two
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Figure 2. The azimuth variation of the streamwise (a) mean velocity (b) Reynolds stress.

different radial locations in the sudden expansion geometry are shown in figure 2
(the data acquisition system and instrumentation are discussed in § 3.2). U (r, z) and
〈σu(r, z)

2〉 have been averaged over the azimuth (where θ ′ = θo +�θ) to show that the
aberration of the streamwise mean and Reynolds stresses is within 10 %. Therefore,
the Fourier-azimuthal decomposition of the azimuthal spatial correlations is a fitting
tool for extracting the most energetic azimuthal modal features of this flow. For the
radial direction, Lumley’s (1967) POD is most effective.

Some of the more general mathematical properties of the POD are outlined in Aubry
et al. (1988) and Berkooz, Holmes & Lumley (1993). In short, the POD seeks to
maximize the mean-square projection of a candidate event onto a vector field, via the
calculus of variations. The kernel used in the maximization is constructed using Hilbert
Schmidt’s theory of integral equations with symmetric kernels, and the problem results
in an integral eigenvalue equation of the Fredholm type:∫

R

Bij (r, r
′, m, z)φj (r

′, m, z)r ′ dr ′ = λ(m, z)φi(r, m, z). (2.1)

Here the kernel Bij (r, r
′, m, z) is the ensemble-averaged, Fourier-transformed

(�θ → m) two-point velocity cross-correlation tensor Rij (r, r
′, �θ, z) = 〈ui(r, θ, z, t)

uj (r
′, θ ′, z, t)〉. The technique is optimal in that most of the energy is contained in the

first structure alone, and the orthonormal sequence is ordered (λ(n) � λ(n+1)). Since
the eigenvalues and eigenfunctions are properties of the kernel, they can be utilized
to reconstruct it from

Bij (r, r
′, m, z) =

∞∑
n=1

λ(n)(m, z)φ(n)
i (r, m, z)φ(n)

j (r ′, m, z), (2.2)

and an infinite number of eigenfunctions can be used to reconstruct the original
instantaneous velocity:

ûi(r, m, z, t) =

∞∑
n=1

ân(m, z, t)φ(n)
i (r, m, z) (2.3)

with

ân(m, z, t) =

∫
R

ûi(r, m, z, t)φ(n)
i (r, m, z)r dr. (2.4)
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Figure 3. Axisymmetric sudden expansion experimental facility.
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Figure 4. Mean velocity profiles at the expansion inlet: (a) streamwise component: (b) radial
(V/Ucl) and azimuthal (W/Ucl).

3. Experiment
The axisymmetric sudden expansion, located in the College of Engineering at

Clarkson University, is depicted in figure 3. Details of the tunnel and air supply can
be found in Cole & Glauser (1998b), Eaton (1999) and Tinney, Eaton & Glauser
(2002a), whereas only the highlights will be discussed here. The test section comprises
an expansion ratio of 3 (expanding from a 76 mm diameter pipe to a 228 mm diameter
pipe), and is 1.52 m in length. A small slot milled along the bottom surface of the
expansion allows a probe sting to be mounted on a flying traversing mechanism
(parallel with the axis of the tunnel) located on a bench outside the expansion’s test
section. The air that is fed to the expansion test section is conditioned by a 76 mm
pipe, 3.66 m in length. The length-to-diameter ratio of the pipe (48:1) ensures fully
developed flow at the inlet to the expansion test section.

Profile measurements at the inlet to the expansion were acquired using a cross-wire
probe positioned along four planes (0◦, 90◦, 180◦, 270◦), and are shown in figure 4.
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Figure 5. (a) Average motion profile of flying-wire traverse using single-wire probe.
(b) Comparisons between stationary- and flying-wire probe on the centreline.

Details of the data acquisition system and instrumentation are discussed in § 3.2.
These profiles were created from an ensemble average of five statistically independent
blocks (2048 samples/block) sampled at 100 Hz and are shown in figure 4(a) to
collapse extremely well, given the statistical uncertainty of the measurements (≈ 3 %).
Based on the solution given by Blasius where U = 0.99Ucl, the average boundary
layer at the inlet was found to be 7.06 mm, or 0.093D thick. D for this calculation is
the diameter (76 mm) of the smaller pipe at the inlet to the expansion; and the inlet
mass flow rate, expressed as a function of the centreline velocity, was calculated to be
4.7 × 10−3Ucl. Likewise, the mean radial (V/Ucl) and azimuthal (W/Ucl) velocities at
the inlet are shown in figure 4(b) and are essentially zero. This indicates that there is no
appreciable swirl at the inlet to the sudden expansion. Measurements were conducted
at a Reynolds number of 54 000, based on centreline velocity (Ucl = 10.35 m s−1) and
inlet pipe diameter.

3.1. Flying wire

Due to the directional ambiguity of hot-wire anemometry, the flying-wire technique
was used to capture the two-point statistics in regions where reverse flow and hot-wire
rectification errors were likely, as was commonly found along the outer wall regions
of the flow. This technique has been well documented (Watmuff, Perry & Chong 1983;
Panchapakesan & Lumley 1993). Its advantage is the ability to improve the linearity
of the probe’s response by imposing a large bias velocity on the probe’s sensing wire,
thereby reducing the cone-angle between the probe’s axis and the oncoming velocity
vector, and ultimately improving the accuracy of the measurements.

In the present study, a stepper motor accelerated and decelerated a sled (that the
probe rake was attached to) to a prerecorded impulse velocity near 3.5 m s−1 between
z/h =14 and z/h ≈ 0. During each sled pass, the position of the stepper motor was
recorded simultaneously with the CTA’s output so that the position of the probe
was known during its acquisition. Special attention was given to the alignment of
the sled traverse with respect to the tunnel’s axis, so that the vertex of the probe
rake was located in the centre of the tunnel during its entire streamwise displacement.
Furthermore, the mean impulse velocity of the sled, shown in figure 5(a), was acquired
using a single-wire probe averaged over 1024 runs, without flow through the tunnel.
This was later subtracted from measurements taken when the tunnel was turned on.
Flying-wire measurements were then repeated with the tunnel turned on and were
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Figure 6. (a) Mean streamwise velocity profiles, where Ucl = 10.35 m s−1. (b) Mass flow rate
calculated with the single cross-wire data.

compared with stationary measurements under the same flow conditions in an attempt
to reconcile any differences between the two techniques. Excellent accordance can be
seen between the two data-sets shown in figure 5(b), despite small variations in the
averaged motion profile of the sled. Mean streamwise velocity profiles (U/Ucl) using
this flying-wire technique are shown in figure 6(a), demonstrating the effectiveness of
this technique in sensing the outer wall regions of the flow where flow reversals are
common.

Due to the physical nature of wall-bounded flows, the principle of mass conservation
was calculated using the measurements from figure 6(b) and a trapezoidal substitution
for

ṁ = 2πρ

∫ R

0

U (r)r dr. (3.1)

The results are shown in figure 6(b). In general, the mass flow rate is slightly lower
before and after the reattachment region (near z/h = 8 and 9), presumably a result of
the synthesis of small statistical errors in the measurements and numerical integration
error. Had these errors been a result of flow leakage, one would expect to see a lower
mass flux at the downstream location. Cole (1996) investigated this phenomenon in
more detail and found many qualitative similarities with other investigators.

3.2. Data acquisition and instrumentation

The cross-wire measurements incorporated sixteen differential channels of thermal
anemometry, each sampled at a frequency of 2 kHz and low-pass filtered at 820 Hz.
The eight probes comprised custom built Auspex cross-wires, with tungsten wire
sensing lengths (lw) of 1.0 mm and diameters of 5 µm (aspect ratio of 200). Given
the radial and streamwise variations of the mean velocities, the corner frequency
fc = U (r, z)/2lw ranged between 5.2 kHz and 1.2 kHz for the flying-wire measurements,
and between 4.1 kHz and 420 Hz for any stationary measurements at the Reynolds
number studied.

Data acquisition was accomplished using 16-bit resolution IOTech analog-to-
digital converters with simultaneous sample and hold. Quantization errors for these
instruments are on the order of 3 × 10−4 V for a ±10 V bipolar range. The calibration
procedure for the cross-wires, described in Cole & Glauser (1998b) and Eaton (1999),
used an expression relating the free-stream velocity Uo to the effective velocity Ueff

(seen by the probe), as suggested by Hinze (1975).
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Figure 7. The Reynolds stresses.

3.3. Reynolds stresses

Figure 7 shows the normal and shear stress profiles obtained from 450 statistically
independent sled passes using a single radial rake of cross-wire probes (eight probes)
and the flying-wire technique. The maximum values of 〈u2〉 are shown to comprise the
greatest portion of turbulent energy, while 〈v2〉 and 〈w2〉 are maximally similar. All of
them peak near z/h = 7 before the reattachment point, and fall rapidly (nearly half of
their energy is lost) by z/h =10. In general these Reynolds stresses demonstrate simi
lar behaviours (in magnitude) to those of Bradshaw & Wong (1972) and Castro &
Haque (1987). The streamwise/azimuthal shear stresses 〈uw〉 are not shown, as they
are insignificant in value.

What is striking about these normal stresses is that until the collapse of the potential
core, the location where the turbulent energy peaks is closer to the central regions of
the flow (towards r/R = 0), rather than the expansion lip line. Gould, Stevenson &
Thompson (1990) and Cole & Glauser (1998a) demonstrated nearly identical features,
despite differences in the inlet conditions. Though the turbulence model of Gould
et al. (1990) over-predicted the shear stress values (in some instances), the divergence
of the shear layer towards the potential core before its collapse was evident. This
is surprising considering the profiles of Castro & Haque (1987), who attributed this
augmentation at the shear layer centre-line to the mean streamline curvature, a known
phenomenon by which a slightly lower pressure in the recirculating region forces the
mean shear layer to curve more rapidly towards the wall than in other free shear flows
(i.e. the behaviour of the axisymmetric jet would be the most appropriate comparison
to the current study).

Castro & Haque (1987) showed that the normal stresses, as well as the vorticity
thickness, were typically larger in the early part of the flow when compared to the
planar turbulent mixing layer. Their findings also demonstrated a dominance of the
turbulent spanwise energy relative to the normal energy in the reattachment region.
This is in correspondence with the current stress profiles (figure 7) which illustrate
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an increase in the azimuthal stresses near the wall regions of the flow, whereas the
radial stresses continue to decay due to the wall’s impermeability. However, in the
axisymmetric sudden expansion, the collapse of the potential core (specifically around
z/h = 5) reduces the statistical features along the centreline, thus preventing a linearly
self-similar solution to the profiles, unlike the investigations of Castro & Haque
(1987). Therefore, the range over which a direct comparison could be made between
the axisymmetric jet and the current study is limited to a region that does not include
many of the features of the flow that are of interest, specifically the reattachment
region around z/h = 9.

The stress profiles shown here comprise perhaps one of several identifiable dif-
ferences among axisymmetric sudden expansion flows, axisymmetric jets, and the
planar backstep/mixing layer studies. Though the axisymmetric sudden expansion
possesses characteristic features of the axisymmetric jet (a potential core region) and
of the planar backstep flow (streamline curvature), the flow through the axisymmetric
sudden expansion produces a turbulence structure that is quite unique, where self-
similarity is concerned. We will revisit this discussion in § 5.

4. Multi-point cross-wire measurements and the two-point statistics
Multi-point measurements of the azimuthal spatial field were acquired with a probe

sting consisting of two radial rakes of cross-wire probes mounted on the traverse sled,
which differs from the rake used in § 3. One radial rake was fixed while the other rake
had the freedom to pivot between 0◦ and 180◦, relative to the other rake. Following
the suggestions of Glauser & George (1992), the mean azimuthal invariance of this
flow was considered in the measurement procedure, thus the two-point measurements
were performed between 0◦ and 180◦. In doing so, a grid density of 360 total points
can be constructed by measuring only half of these points. This grid, shown in figure 8,
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identifies the 8 radial (�r/R = 0.115) and 45 azimuthal (�θ = 8◦) locations used to
create the kernel in (2.1). The cross-wires were oriented to measure the velocity’s
streamwise u and radial v components from which normal and shear Reynolds
stress terms (uu, uv, vu and vv) are calculated. For statistical convergence, each
two-point measurement comprised 450 statistically independent sled passes, whereby
2048 samples were acquired as the cross-wires were propelled down the length of the
tunnel. Based on the Reynolds stress values shown in § 3.3, the percent variance from
the mean, using ε = σu(U

√
N)−1 and N = 450, was less than 1 % in the core and less

than 5 % at the outer wall.

4.1. Correlations

Several of the correlations were selected to provide the reader with a general picture
of the statistical characteristics of the turbulent motions of this flow. In figure 9,
the radial and azimuthal characteristics of the correlation function Ruu(r, r

′, �θ, z)
are illustrated by fixing r and θ0, and changing r ′ and θ ′. This is shown at three
streamwise positions in the flow: z/D = 3, 6, 12.

In figure 9(a), the correlation tensor Ruu(0.35, r ′, �θ, 3) clearly illustrates the initial
development of shedding events from the expansion’s lip. Given the slow roll-off of
Ruu(0.35, r ′, �θ, 3), which is near the centre of the shear layer and close to the lip
where one would expect to find a large amount of energy in the higher azimuthal
modes (if it existed), it is clear that the dominant length scales in the flow are
sufficiently large. Thus, any scales which may have been aliased because of the spatial
distances between probes have had a negligible effect on the results. The fact that the
topography of the correlation at r/R = 0.69 in figure 9(d) lacks any significant features
suggests a relatively dead zone in the flow. Subsequently, figures 9(b) and 9(e) show a
growth of the coherent structure at both radial positions. Closer observation indicates
that the peak is taller and narrower at r/R = 0.35 than at r/R = 0.69; however the
azimuthal length scale is shown to encompass a much broader area at the higher
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radial position. There were similar findings at z/h = 9 (not shown), characterizing
a radial and axial growth of the turbulent structure. In the redeveloping region of
the flow at z/h = 12 (figure 9c, f ), a decrease of the radial correlation results in the
broadening of the azimuthal length scales.

5. Results of the modal analysis
A comparison of a full summation of the eigenmodes

ζ (z) =
∑

n

∑
m

λ(n)(m, z), (5.1)

with the total TKE is shown in figure 10(a), thus demonstrating the axial location
(around z/h = 8) where the turbulence activity is greatest. These results have
qualitative similarities to those of Cole & Glauser (1998a) and show a consistency
between direct measurements of the TKE and the solutions from the decomposition.

The total energy of the first 5 POD modes

ξ (n, z) =

∑
m

λ(n)(m, z)

ζ (z)
, (5.2)

is shown in figure 10(b), and it is similar to other applications of these techniques
where a large percentage of the local energy (∼30 %) is captured in the first radial
POD mode alone. With the first two POD modes combined, nearly 50 % of the
energy is contained, and so on. A slight increase in the relative energy contained
in the first (largest) POD eigenvalue implies that the development of the radial
structure becomes more coherent as it convects downstream from the expansion lip.
In subsequent figures, only the first few POD modes will be used, as they have been
shown to comprise sufficient amount of the total turbulent energy.

5.1. Eigenvalue distribution

The eigenvalue distributions are shown in figure 11, normalized by (5.1). Upstream
towards the expansion lip (z/h = 3 in figure 11a), the distribution of the Fourier-
azimuthal energy is fairly broadband, in contrast to a coalescence of energy in the
lower azimuthal modes shown in successive figures. The fully developed profile at
the inlet to the expansion is responsible for this as Cole (1996) has shown that the
turbulent spectral densities are broad in this region of the flow. As the flow evolves
downstream, the integral scales increase, and the energy becomes less broad and
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Figure 11. Eigenvalue distribution of the first three POD modes and azimuthal modes 0 to
11 at (a) z/h = 3, (b) z/h = 5, (c) z/h = 7, (d) z/h = 9, (e) z/h = 11, (f ) z/h = 13.

more low-dimensional in azimuth. No dramatic change in the eigenspectra was found
beyond azimuthal mode m =6 for all step-heights, with a preponderance of energy in
the first few azimuthal modes, primarily m = 0, 1, 2 and 3. This suggests a small level
of aliasing in the azimuthal decomposition, and that the azimuthal grid’s resolution
was satisfactory for resolving the spatial modes of this flow.

The most striking feature of the eigenspectra is the pronounced modal switching,
demonstrated in figure 11(d, e), that occurs in the reattaching region of the flow.
While the azimuthal mode 2 dominates the recirculating zone of the flow, it succumbs
to the helical mode 1 after reattachment and into the initial stages of the redeveloping
regions of the flow. This differs drastically from the azimuthal modal behaviour of
the axisymmetric jet (Glauser & George 1987; Citriniti & George 2000) which has
demonstrated a dominance in the first symmetric m =0 mode, followed by higher
modes 4, 5 and 6. Bradshaw & Wong (1972) observed the creation of a ‘unique’ struc-
ture at reattachment caused by a change in the shear layer’s mass flow. Despite little
change in the velocity gradient (∂U/∂r), they simply proposed that the impermeability
of the wall caused the absence of a normal velocity component (v = 0), resulting in a
rapid decay of the Reynolds shear stress. The decay of the shear stress terms has been
observed in many reattaching flows (Chandrsuda & Bradshaw 1981; Castro & Haque
1987; Eaton & Johnston 1981), regardless of large differences in the initial conditions,
and this decay has been generally attributed to the mean streamline curvature.

5.2. Modal reconstruction of the kernel

The eigenvectors are now used to reconstruct the kernel Bij

B
(N)
ij (r, m, z) =

2∑
n=1

λ(n)(m, z)φ(n)
i (r, m, z)φ(n)∗

j (r, m, z), (5.3)
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with r = r ′ for various azimuthal mode numbers. Only the first two POD modes
(∼50 % of the turbulent energy) will be used in the reconstructions, since additional
POD modes were found to have little effect on the principle turbulent features. The
results are presented in figure 12.

For the axial component of velocity, it is clear that the axisymmetric mode
(figure 12a) dominates the shape of the flow structure leading towards reattachment
and through the recirculating regions of the flow. Though the next few modes have
been shown to possess more turbulent energy (overall), they are clearly confined to the
shear layer regions and contribute very little to the regions where the axisymmetric
mode is shown to dominate. Reconstructions of the higher Fourier-azimuthal modes
m = 4 and m =5 show the streamline curvature of the flow. Therefore, the adverse
pressure effects due to the expansion wall only affect the higher modes. Furthermore,
the energy of the higher modes decays rapidly as they approach the outer wall, leaving
the outer recirculating region dominated by an axisymmetric structure, once more.
The decay in energy of all other higher modes (m > 5) after reattachment is like the
behaviour of the m =5 eigenvector reconstruction shown in figure 12(f ).

6. Conclusion
The decomposition of the streamwise and radial components of the fluctuating

velocity field of the flow through an axisymmetric sudden expansion was investigated
using proper orthogonal and Fourier decomposition in radius and azimuth,
respectively. The decomposition was performed along slices of the (r, θ)-plane, at
several streamwise positions, starting from the recirculating region (z/h = 3 to 7),
through the reattachment region (z/h = 7 to 9), and into the beginning stages of the
redeveloping region (z/h = 9 to 13) of this flow. The experimental method employed a
flying-wire technique which was shown to effectively capture the multi-point statistics
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using cross-wire CTA tools in a flow characterized by regions of high turbulence
intensities and flow recirculations.

The eigenvalues from the decomposition have brought out the dominance of the
Fourier-azimuthal and POD modes that govern a moderate to large percentage
of this highly unsteady wall-bounded flow. The results of the POD showed that
approximately 30 % and 20 % of the total energy was contained in the first and
second modes, respectively, through all streamwise positions studied. The Fourier-
decomposition of the azimuthal structure indicated a noticeable shift in the energy
near reattachment, from a flow dominated by an m = 2 mode to one dominated by
an m = 1 mode. A reconstruction of the axial component of the eigenvectors showed
that the reattachment and recirculating regions near the outer wall were strictly
dominated by an axisymmetric structure, whereas the shear layer regions comprised
a contribution from the helical and azimuthal modes 2 and 3. Higher modes 4 and 5
were found in the low-speed regions near the outer wall of the shear layer and were
clearly shown to follow the streamline curvature of the flow towards the wall at
reattachment where they decayed drastically in energy before impinging on the wall.
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